
Exploring and Understanding
Multicore Interference from

Observable Factors

Benjamin Lesage, David Griffin, Iain Bate and Frank Soboczenski

Critical
systems

 Safety is an important concern for critical systems
- Failures can have catastrophic consequences

 Evidence has to be gathered to verify the system fits its requirements
 Systems are built for robustness

- The ability to withstand perturbations, faults and variations
- Evidence of robustness also needs to be gathered

Timing
analysis

 Temporal constraints require the timely completion of tasks
 The behaviour of a task depends on the underlying platform

- Modeled or measured as part of a timing analysis
 Under correct assumptions, tasks can be analysed independently

- E.g. assuming worst-case input states

Platform Task Timing

Multicore

 Push towards multicore platforms for efficiency
- Off-core resources are shared between cores
- Multiple cores execute tasks in parallel

Platform Task Timing

Multicore

 Shared resources create new interference channels:
- Concurrent modifications of a resource state
- Arbitration delays on concurrent accesses to a resource

 Co-runners cannot be analysed independently without precautions
- Segregation is costly
- Segregation can be imperfect

Platform Task Timing

 Objective: Assess the impact of interferences on a task
- Identify the interference channels that need to be tackled
- Evaluate the benefits of mitigation schemes

 Rely on existing performance monitoring infrastructure (PMC)

- Limit requirements on initial platform knowledge

 Feature selection: reduce a dataset by extracting the most important features
- Capture contributors to execution time variability

 Rely on systematic exploration of interference space

- Cover a range of interference scenarios
- Challenge assumptions on worst-case scenarios

Overview
1. Feature Selection

a. Principal Components Analysis (PCA)

b. Requisites

2. Evaluation platform

3. Analysis Framework
a. Synthetic tasks

b. Data Collection

c. Analysis process

4. Evaluation
a. Sources of variability

b. Impact of interferences

PCA Split factors in the dataset into Principal Components (PC)

 Capture the main axes of variance

 Each PC has a loading

 Contribution of the PC to the overall variance

 Orders PC from most to least relevant

 Each factor has a loading on its PC

 Represent the correlation of factors to a PC

 Focus on high loading PC correlated to execution time
 Higher loading PC capture the most variance

 Higher loading factors have the most impact on the PC

PCA Split factors in the dataset into Principal Components (PC)

 Capture the main axes of variance

 Each PC has a loading

 Contribution of the PC to the overall variance

 Orders PC from most to least relevant

 Each factor has a loading on its PC

 Represent the correlation of factors to a PC

 Focus on high loading PC correlated to execution time
 Higher loading PC capture the most variance

 Higher loading factors have the most impact on the PC

PCA Split factors in the dataset into Principal Components (PC)

 Capture the main axes of variance

 Each PC has a loading

 Contribution of the PC to the overall variance

 Orders PC from most to least relevant

 Each factor has a loading on its PC

 Represent the correlation of factors to a PC

 Focus on high loading PC correlated to execution time
 Higher loading PC capture the most variance

 Higher loading factors have the most impact on the PC

Requisites

Good quality features are identified from a good quality dataset

 Consider a wide variety of observation scenarios
- Guarantee that existing variability in the system can be analysed

 Capture all candidate factors in the dataset

- Allow the identification of interactions between observed factors

 Observe multiple active interference channels
- Capture correlation between channels

TC27x

Core 1
High Performance

Core 2
High Performance

Core 0
Energy Efficient

▪Three asymmetric cores
 - Feature local memories
▪Delays on arbitration on Cross Bar slaves
▪Ad-hoc instrumentation
 - Capture timer and PMCs
 - Stored in local buffers
 - Fetched through debug interface
▪Focus on RAM accesses
 - Round robin arbitration
 - Code in scratchpad
 - Data objects mapped to RAM

Synthetic
tasks

 Rely on synthetic tasks to generate contention
- Control on the level and channel of interferences
- Requires basic knowledge of the target platform

 Generate an influx of conflicting accesses

- Run as background tasks, pre-emptible by analysed tasks

 Allow systematic testing of interference channel, level, and patterns
- Periodic reconfiguration triggered on system idle tick

contender()

0x00: Loop:

0x01: access mem[01]

0x02: access mem[02]

0x03: access mem[03]

0x04: access mem[04]

 <...>

0xFD: access mem[FD]

0xFE: access mem[FE]

0xFF: access mem[FF]

reconfigure()

P := permutation([0x01:0xFF])

I := rand([min_inter:max_inter])

For j in P[0x01:I]

mem[j] := RAM

For j in P[I:0xFF]

mem[j] := SCRATCHPAD

contender()

0x00: Loop:

0x01: access mem[01]

0x02: access mem[02]

0x03: access mem[03]

0x04: access mem[04]

 <...>

0xFD: access mem[FD]

0xFE: access mem[FE]

0xFF: access mem[FF]

reconfigure()

P := permutation([0x01:0xFF])

I := rand([min_inter:max_inter])

For j in P[0x01:I]

mem[j] := RAM

For j in P[I:0xFF]

mem[j] := SCRATCHPAD

Loop over local or RAM accesses
Focus on TC27x RAM arbitration

contender()

0x00: Loop:

0x01: access mem[01]

0x02: access mem[02]

0x03: access mem[03]

0x04: access mem[04]

 <...>

0xFD: access mem[FD]

0xFE: access mem[FE]

0xFF: access mem[FF]

reconfigure()

P := permutation([0x01:0xFF])

I := rand([min_inter:max_inter])

For j in P[0x01:I]

mem[j] := RAM

For j in P[I:0xFF]

mem[j] := SCRATCHPAD

Dynamic access patterns
Configuration within user bounds

Data
Collection

 Data collection relies on an automated framework
 Tests are driven by the user-provided configuration

- Selected performance counters, number of observations, etc.
 Focus on reproducibility of results and experiments

Configuration

Data
Collection

1. Application configuration and synthetic tasks are generated from a template
- This includes the list of tasks and resources in the system

2. The application build tree is generated from the configuration
- Insert instrumentation around analysed task

3. Application and contenders are compiled into a single binary

Template

Oil Build tree Binary

Application

Synthetic tasks

Configuration

1 2 3

Binary

Data
Collection

4. Observable events set are generated based on the required ones
- Each event is counted by a specific register
- Some combinations of events cannot be captured on the TC27x

5. The board runs the application for each event set, collecting runtime traces
6. Traces are merged by matching corresponding runs of a task

- Noise between observations verified to be random and negligible

Configuration

4 6

 Evaluated on different applications:
 TACLeBench benchmarks
 Automotive case study from the CONCERTO Project

http://www.concerto-project.org/
 Familiarization case study with DENSO

 Evaluated on different software platforms:
 Erika Enterprise Real-Time operating system
 Sysgo PikeOS
 Real-Time Linux (PREEMPT_RT)
 Barebone

 Evaluated on different hardware:
 TC27x
 Freescale P4080
 Raspberry Pi3
 Cobham Gaisler Leon3 Multicore

Evaluation
Setup

Focus

http://www.concerto-project.org/
http://www.concerto-project.org/
http://www.concerto-project.org/

Evaluation-
Factor selection

Aurix Tricore TC27x

Running on Core 0

bitcount

Simple kernel of bit

counting functions.

• Has multiple loops

• Uses little data

▪ Max/Min runtime: × 1.21
▪ Variability resulting from PMC:

- Data Memory Stalls
- Stalls in the Arithmetic Unit
- Stalls in the Load/Store unit
- Executed branches

▪ Results suggest that bitcount is:
- Control flow dependent
- Independent on shared resources

PMEM_STALL

DMEM_STALL

IP_DISPATCH_STALL

LS_DISPATCH_STALL

LP_DISPATCH_STALL

PCACHE_HIT

MULTI_ISSUE

PCACHE_MISS

DCACHE_HIT

DCACHE_MISS_CLEAN

DCACHE_MISS_DIRTY

TOTAL_BRANCH

Benchmark facts Selected PMC Benchmark analysis

Evaluation-
Factor selection

Aurix Tricore TC27x

Running on Core 0

bitcount

Simple kernel of bit

counting functions.

• Has multiple loops

• Uses little data

▪ Max/Min runtime: × 1.21
▪ Variability resulting from PMC:

- Data Memory Stalls
- Stalls in the Arithmetic Unit
- Stalls in the Load/Store unit
- Executed branches

▪ Results suggest that bitcount is:
- Control flow dependent
- Independent on shared resources

PMEM_STALL

DMEM_STALL

IP_DISPATCH_STALL

LS_DISPATCH_STALL

LP_DISPATCH_STALL

PCACHE_HIT

MULTI_ISSUE

PCACHE_MISS

DCACHE_HIT

DCACHE_MISS_CLEAN

DCACHE_MISS_DIRTY

TOTAL_BRANCH

Evaluation-
Factor selection

Aurix Tricore TC27x

Running on Core 0

matmult

Matrix multiplication kernel

• Fetches input in RAM

• Stores output in RAM

• Follows a single path

▪ Max/Min runtime: × 1.32
▪ Variability resulting from PMC:

- Stalls in data memory on Core 0
- Stalls in data memory on Core 1
- Stalls in data memory on Core 2

▪ Result suggests that matmult is:
- Data-dependent
- Sensitive to the behaviour of other cores

PMEM_STALL

DMEM_STALL

IP_DISPATCH_STALL

LS_DISPATCH_STALL

LP_DISPATCH_STALL

PCACHE_HIT

MULTI_ISSUE

PCACHE_MISS

DCACHE_HIT

DCACHE_MISS_CLEAN

DCACHE_MISS_DIRTY

TOTAL_BRANCH

Evaluation-
Factor selection

Aurix Tricore TC27x

Running on Core 0

dijsktra

Path search in a graph

• Special case for empty

paths

• Highly variable runtime

• Fetches input in RAM

▪ Max/Min runtime: ×1577
▪ Variability resulting from PMC:

- Stalls in the Arithmetic unit
- The number of executed branches
- Stalls in the Load/Store unit on Core 1
- Stalls in the Load/Store unit on Core 2

▪ Result suggests that dijsktra is:
- Control flow dependent
- Sensitive to the behaviour of other cores

PMEM_STALL

DMEM_STALL

IP_DISPATCH_STALL

LS_DISPATCH_STALL

LP_DISPATCH_STALL

PCACHE_HIT

MULTI_ISSUE

PCACHE_MISS

DCACHE_HIT

DCACHE_MISS_CLEAN

DCACHE_MISS_DIRTY

TOTAL_BRANCH

Evaluation-
Interferences

Normalised execution time for matmult

Normalised execution time for matmult

Increased interferences

Evaluation-
Interferences

Normalised execution time for matmult

Increased runtime

Evaluation-
Interferences

Normalised execution time for matmult

Worst-case configurations
do not stem from maximised

interferences

Evaluation-
Interferences

Normalised execution time for matmult

Both cores do not have the
same impact

Evaluation-
Interferences

Evaluation-
Modelling

Interference modelling results on dijsktra

 Early work on modelling the impact of interferences on a task
 Forecasting-Based Interference analysis (FBI)

- Use the selected factors as input to a multi-variate model
- Interferences modelled as a multiplicative factor on the execution time

FBI

Conclusion

 Introduced a framework for the evaluation of the impact of interferences
- Identify the interference channels relevant to a task
- Automate the gathering of evidence to support timing arguments

 Evaluated on numerous configurations

- [Ongoing] Real-Time Linux on Raspberry Pi3
- Familiarization case study with Denso
- Sysgo PikeOS on Freescale P4080
 …

 A first step towards tackling inter-core interferences
- Feed the results into further tools, e.g. FBI analysis
- Assess the robustness of a platform

Conclusion

 A wide exploration of the interference space is required
- Rely on synthetic tasks to generate controlled contention
- Resource stressing may not lead to worst-case configurations

 Observability should be supported at the platform level

- Rely on existing performance monitoring infrastructure
- Capture a broad view of the system behaviour

 Exercise a variety of interference channels

- Rely on platform specific knowledge, refined through experimentation
- Challenge assumptions to increase confidence in the observations

 Illustrations courtesy of icons8.com

Thank you for your attention

 Template courtesy of SlidesCarnival

PCA
Principal Components Analysis
exhibits the underlying structure
in a dataset

PCA
Principal Components Analysis
exhibits the underlying structure
in a dataset

Both axes exhibit a similar
spread of values

PCA
Principal Components Analysis
exhibits the underlying structure
in a dataset

A change of axes can cover a larger
range of variance

PCA
Principal Components Analysis
exhibits the underlying structure
in a dataset

A change of axes can cover a larger
range of variance

PCA
Principal Components Analysis
exhibits the underlying structure
in a dataset

A change of axes can cover a larger
range of variance

PCA
Principal Components Analysis
exhibits the underlying structure
in a dataset

A change of axes can cover a larger
range of variance

PCA
Principal Components Analysis
exhibits the underlying structure
in a dataset

▪ Principal Components (PC) capture the main axes of variance
- Reframe the dataset according to new dimensions
- Correlated factors are part of the same PC

1. Identify the Principal Components (PC) in the dataset
- Apply PCA to extract the main axes of variance

2. Discard PC not correlated to the analysed task’s execution time

- Focus on capturing timing variability

3. Discard PC with low contribution to overall variance

- Remove low impact factors
4. Bound the number of PMC selected per component

- Compute relative weights of remaining PC
- Pick more PMC from high variance PC

5. Select best PMC set

- Maximise the weighted loadings of selected PMC

- Solved through Integer Linear Programming

- Include user or platform constraints

Feature
selection

TC27x

▪ Three asymmetric cores
- Feature local scratchpads
- Interface for debug

▪ Delays due to arbitration
on Cross Bar slaves

▪ Focus on RAM accesses
- Round robin arbitration
- Code in scratchpad
- Data mapped to RAM

 Erika Enterprise Real-Time operating system
- Support for multicore platforms
- OSEK/VDX Compliant
- Open Source and Free of charge

 Ad Hoc Instrumentation routines
- Capture timing and PMC values on call

- Request propagated to all cores
- Data stored in local scratchpad buffer
- Interrupt on full buffer to trigger data collection on host

 Instrumentation of code through Rapita Verification Suite
- Task level, end-to-end observations

Software
platform

contender()

0x00: while not configure:

0x01: access mem[01]

0x02: access mem[02]

0x03: access mem[03]

0x04: access mem[04]

<...>

0xFD: access mem[FD]

0xFE: access mem[FE]

0xFF: access mem[FF]

reconfigure()

P := permutation([0x01:0xFF])

I := rand([min_inter:max_inter])

For j in [0x01:I]

mem[j] := RAM

For j in [I:0xFF]

mem[j] := SCRATCHPAD

▪ Contenders loop over a sequence of memory accesses

▪ Contenders are mapped into core local scratchpads

- No interference from instruction fetch

- Require some allocated space in the memory map

▪ Accesses target either local, or uncacheable memory segments

- Control which ones generate conflicts

- Dynamically modified code to alter access patterns

▪ Configurations generated within user-defined bounds

