Software Safety and Security
in a world of Systems

Franco Gasperoni

AdaCore

Disclaimer

| am a simple observer

Other people @ AdaCore know automotive much better than | do

Security is VERY important, tomorrow’s talk is about security

Safety & security are tightly connected

The point of this talk
Engineering requires
* Intuition / creativity - Humans only

* Formalism (model of the world) - Tools & humans

Complexity of engineering safe & secure systems keeps /1
if formalization 2 help from machines A (tools)

Where are possible near-term / long-tem wins ?

AdaCore

Automotive: the most important transportation industry today

AdaCore

100 M vehicles produced in 2016
vs a TOTAL of 40,000 planes in the world now

Employees: 50M worldwide
10M in manufacturing

40M car dealers + car repair shops

Sales in 2015

Volkswagen

Toyota Airbus Group

Daimler

General Motors

Ford

Honda

FC

SAIC Motor

BMW

AdaCore

Automotive trends ...

... sShakeup coming ?

1. Safety & Convenience

What do you see?

... @a weapon

Times Square 2017-May-19

Automotive Safety: road crashes

* 1.3 M/year die: 2+ deaths/hour

e 20-50 M/year injured or disabled

* O9th leading cause of death

* Leading cause of death among ages 15-29

» Cost of USD S518 billion globally, 1 to 2% of their annual GDP

* Unless action is taken, 5t leading cause of death by 2030

What if humans were not allowed to drive?

I‘EDILM MPBE lE'IICLE m

OBJECTS rososions RIGHT REARWARD VEHICLE CAMERA

AdaCore

1. Safety & convenience

Level 0: Humans do all the driving

Level 1: one task automated (cruise control)

Level 2: afew tasks automated (L1 + slow down/break in front of obstacles, stay in lane)
Level 3: Some decisions (L2 + look around, decide to change lanes, pass, A7 prototype)
Level 4: Car handles many situations by itself in “safe” places (e.g. highway low-traffic)
Level 5: Humans are NOT allowed to drive, the car does it all (Google car)

Level 6: Cars can fly or planes can drive (Terrafugia TF-X)

AdaCore

AdaCore

2. Shift in engineering complexity

AdaCore

Tesla to produce batteries for significantly less cost

General Motors Company
NYSE: GM - May 22, 3:59 PM EDT

32.93 s #0.21 (0.64%)

1 day 5 day 1 month

Open 32.97
High 33.25
Low 3274

Google Finance - Yahoo Finance - MSN Money

3 month

Mkt cap
P/E ratio
Div yield

1 year

50.10B
5.1
4.61%

Tesla Inc
NASDAQ: TSLA - May 22, 4:20 PM EDT

310.35us +0.48 (0.15%)

After-hours: 310.34 +0.00%

1 day 5 day 1 month 3 month 1 year

Open 312.80 Mkt cap 50.618
High 31N4.37 P/E ratio
Low 306.80 Div yield

Google Finance - Yahoo Finance - MSN Money

5 year

AdaCore

3. Ownership Paradigm

Why do we need to own a car which will sit unused most of the time?

AdaCore

Music

| owned music records

My daughters not

—

o OU
g =Y

Netflix does not own its servers

amaZon
web services™

AdaCore

On Disruptive Innovation

Telephony

Audio

iPhone. Now in stereo.

(o) 2x L by

AdaCore

Electronics and software made this possible

S22I%a
‘\\’\%Qg

0 A
AN N @I
N\ ,\@,A((&\ v >

Phones are still in the
communication business,
voice is just one many things
communicated

AdaCore

Will electronics and software make this possible ?

AdaCore

What’'s at stake: value creation

There is already a lot of SW in a car

Jet fighter: 10+ M SLoc
A380 - B787: 100+ M SLoc

Modern car: 100+ M Sloc

Much more software coming

AdaCore

OEMs we spoke to

SW development getting more complex

challenge to maintain quality at a reasonable cost.
life cycle is 5 years for a car

But software improvements are done every year

Self driving vehicles require a different attitude towards

Safety (accidental crashes)

Security (cars being used as weapons on a mass scale)

=== Software Engineering Institute
Carnegie Mellon University

FAA RESEARCH PROJECT ON SYSTEM

AUEIES e St 1 el g es COMPLEXITY EFFECTS ON AIRCRAFT SAFETY:
IDENTIFYING THE IMPACT OF COMPLEXITY ON

SAFETY

Sarah Sheard, Chuck Weinstock, Michael Konrad, and Donald Firesmith
July 2015

Summary
Current best practice— —is unable to cope with
the exponential growth in size and interaction complexity of embedded software in today’s increas-

ingly software-reliant systems.

AdaCore

Who will solve the automotive software challenge?

Tier |

(System Manufacturer)

Tier 2

(Parts Manufacturer)

va
CHEVRULET
TN

@ TOYOTA Q\)

Mercedes-Benz

@BOSCH DENSO Valeo
@ntinental® DELPHI TR

&;’I:II;UMENTS & BOSCH

MMAGNA (fnfineon :'freesgcﬁle
MAGNA ELECTRONICS sconductor

3M ShiaZtsu
0 -BASF

@ TOYOTA

= 1‘— @
CHE\II‘!DLEY
@ T
lercedes-Benz

(=

vl
Google © ‘cisco

:)BOSCH DENSO %
Tier |
(System Manufacturer)

Autoliv
@ntinental> TIR¥W” DeLPrn .22,

Tier 2

lf‘?STRUMENTS (Q—V) BOSCH VQIOdgne
(Parts Manufacturer A MAGNA

() ibeo‘
MAGNA ELECTRONICS @ o

QUANERGY

3M ShirZtsu
[1-BASF

2040

iCar

» l o)
(Manu? acturer)

Tier |

(System Manufacturer)

Tier 2
(Parts Manufacturer

Google Tr=sLA

UBER

‘ CHEVROLET m

@ TOYOTA T

Mes m:des Benz

)BOSCH DENSO #

Autoliv

@ntinentals 79 DeLPH 220,

ﬁ;TRUMENTS @ BOSCH VeIOdyne'
A MAGNA @ Ql ibeoy

MAGNA ELECTRONICS UANERGY

3SIM Shirttsu
0:-BASF @JP0ND

Take away

Electronics & SW in the front seat
Mechanics = Mechatronics = Softchanics

This will take time, but when building automotive SW we have to master

time-to-market

complexity > conflicting
requirements

safety & security

This is always a moving target ©

AdaCore

Safety & security standards to the
rescue?

Safety standards

DO-178 B/C or ED-12B/C Avionics

IEC 61508 Industrial automation at large

CENELEC EN 50128 RETWEL

ISO 26262 Automotive

Prescribe “due diligence” during system construction

1,000s of artifacts produced and reviewed (requirements, design, ...)

TESTING is a significant part of the “due diligence”
AdaCore

The challenge with safety standards, DO-178 example

1982: DO-178

Basic SW design assurance
3 DAL (design assurance levels) ie 3 levels of SW safety

1985: DO-178A

Testing and configuration management

1992: DO-178B
5 DALs
Focus moves from testing to requirements

2012: DO-178C

Clarifies tool qualification
Adds Model Based Development and Verification, OO technology, formal methods

AdaCore

1982 to 2012 - 30 years gone by

Technology evolves faster than Safety standards

Work on a new standard started when the technology is already there (example of Model
Based Development, e.g. Simulink)

By the time the new standard is out technology is moving on.

So work has started in 2015-2016 on a meta approach

What are the overarching principles of a safety standard?

EASA, FAA, et al.

“overarching principles to streamline the overall certification process,
looking at it from a system perspective rather than prescriptive rules”

Trying to combine
- system standard (ARP4754A) approach
- software standard (DO-178C)
- complex hardware standard (DO-254)

AdaCore

Overarching properties

1. Intent what is the system supposed to do and how does it address failures ?

2. Correctness is the implementation of the intent OK ?

3. Necessity are all the items in the implementation needed ?
If not, can the additional items be shown not to affect safety ?

AdaCore

Some aspects of engineering systems

One aspect of engineering

—> Create GIZMO
Check GIZMO for
correctness & completeness

~

AdaCore

Another: divide, create, integrate

divide
divide divide

divide divide divide divide

(subproblem) ("subproblem) (subproblem) (" subproblem) (" subproblem) (subproblem) ("subproblem) (subproblem)
solve solve solve solve solve solve solve
subproblem subproblem y subproblem \ subproblem subproblem y subproblem subproblem

[sohnionto J [solutionto J {soluﬁonlo] [solutionto J [soimion to] [solution to] [_solnﬁoutoj (¢
subproblem subproblem subproblem | | subproblem subproblem | | subproblem subproblem

combine

solution to
subproblem

‘onquer

combine

solution to

subproblem
combine

solution to

problem

AdaCore

Tiers of decomposition = refinements of abstraction

N
Abstraction X
created and checked by
Xexperts
J
A \4

|
i Abstraction Y
|

created and checked by
Y experts

. Abstraction Z

created and checked by
Zexperts

Some engineering challenges

Challenge: Experts

Getting experts to work together and understand each other

Control Department Software Department

Functional Test

Algorithm Design &)",lTO' Unit/Structural Test
esign

- plant/algorithm =S
models == ir':":
o

T

P. Albertos, Instituto de Automdtica e Informdtica Industrial, Universidad Politécnica de Valencia

Challenge: Cost of fixing problems

problem
divide
subproblem
divide divide
e

divide divide divide divide

(subproblem) ("subproblem) (subproblem) ("subproblem) (" subproblem) (subproblem) (subproblem) (subproblem)
solve solve solve solve solve solve solve solve
subproblem subproblem Y subproblem subproblem \ubprobh. m subproblem \ubpmhlc m | subproblem

(soluﬁonto] [solmionto J (soluﬁontoJ [solutionto] (uuonlo] - soluuontoJ [solution to J
subproblem subproblem subproblem subproblem subproblem roblem subproblem

combine combine combine

solution to
subproblem

'()Il(l“l.'r

combine combine

combine

solution to

problem

Challenge: The war on talent

In developed countries the need for engineerings
professionals outpaces what local universities can
deliver. This is particularly true in software.

How can businesses meet their engineering needs?

AdaCore

Solutions anyone?

Getting experts to work together

Encourage cooperation across departments

iX

), \ S
\\\\ Cs lexity
w to Manag® co'::;licdl

K hout Getting €°
wil

“Bi-lingual” tools to help experts communicate and
understand each other (an example later on) |

AdaCore

Finding problems ASAP

Humans are good at

Machines are good at

-

-

Create

!

Check

|

J

creating abstractions

execution (following orders)

checking

Requires
formalization

AdaCore

5X Sloc of tests per
operational Sloc

Abstraction created has Execution Checking

No/machine-readable semantics @

Potentially ambiguous semantics
Clear semantics

Clear semantics + ways to state intent

AdaCore

If we have ...

Formalized semantics

— Machines can do part of the work

- can check some inconsistencies
Formalized semantics + ways to state intent

1. State properties of your abstractions

2. Machines can check property-preservation (ideally across abstraction layers)

AdaCore

“T SPEND A LOT OF TIME ON THIS TRSK.
T SHOULD LIRITE A PROGRAM AUTOMATING ITI"

AdaCore

“T SPEND A LOT OF TIME ON THIS TRSK.
T SHOULD LIRITE A PROGRAM AUTOMATING ITI"

.. formalizing & automating takes time and is a tradeoftf

AdaCore

An obligatory XKCD

AdaCore

Intent and formalization

Specifying & checking intent today

Intent: function of many things
- what we can implement, cost, time-to-market, know-how, hiring ...

Some aspects of intent clarified during implementation

Specifying intent: creative activity, hard to formalize as a whole

Checking intent: by hand as part of the whole process (we should do better)

AdaCore

Checking safety & security properties

Use formalisms (likely domain-specific) to

Specify key safety & security properties of the intent
Machines check their consistency (completeness checked by humans)

Machines check properties hold across abstraction layers

AdaCore

Example: UAV Mission Management System 1 of 2

Ranges [a:p:b] (u): from min a, to max b, with increments p, physical unit u.

Climb safety constraints:
max take-off speed: 75kt,
climb rate guaranteed in [0.3, 3] m/s,
precision of flight level capture: +/- 50ft,
precision of speed capture: +/- 5kt.

Cruise safety constraints:
Minimum flight level: 500ft,
Maximum flight level: 1500ft,
Flight level precision: +/- 50ft,
Maximum speed: 125kt,

Descent safety constraints:
descent rate guaranteed in [0.1, 1] m/s,
maximum landing speed: 25kt.

AdaCore

Example: Property preservation across ALs

4 R
Requirements
Some formalized safety &
security properties
o J
7 A

\ 4

N
Simulink models
Plant and control

A J

2 of 2

- Generated code

Correctness of implementation

The architecture abstraction

{ Requirements }

System
architecture

Hardware
architecture

{ Hardware }

v

Software
architecture

{ Software

The Architecture abstraction

How do we understand the impact of architectural decisions?
- Components cannot be safe & secure in isolation

- Need tools to identify mismatched assumptions in system interactions

- Work on secure architectures is an important topic
Today most diagrams (Sysml) don’t have clear semantics.

Is AADL better?

Can asynchronous events interfere? Can

SW components interfere?

In automotive FFl is a requirement

In the 100 M Sloc in a car

Plenty of non critical SW (e.g. audio/video) in theory
How do we know this SW does not interfere with the rest?

Automotive has a word for this FFI

Even this is not enough: if hack car entertainment system + cranks up the volume + puts
unbearable frequency + cannot turn off the radio ...

Windshield sprays hacked + start spraying your windshield + disabling wipers

if something can be hacked it will

Secure architectures is an important area

Researchers' car hacking demonstrations show need for secure architecture

keeping cars' control circuits separate from the Internet ones

Not sharing a common bus between critical + non critical components

Software & correctness

Major classes of software as | understand them in automotive

Control laws: Simulink ®
OS, drivers, ...: Hand-written
Other: Hand-written

Pattern matching: Deep learning techniques

Did | miss something?

Correctness & Deep learning

Deep learning: the key is in the data & learning

Universal Adversarial Perturbations Against Semantic Image Segmentation

Jan Hendrik Metzen

Bosch Center for Artificial Intelligence, Robert Bosch GmbH

janhendrik.metzen@de.bosch.com

Thomas Brox
University of Freiburg

brox@cs.uni-freiburg.de

Abstract

While deep learning is remarkably successful on percep-
tual tasks, it was also shown to be vulnerable to adversar-
ial perturbations of the input. These perturbations denote
noise added to the input that was generated specifically to
fool the system while being quasi-imperceptible for humans.
More severely, there even exist universal perturbations that

are input-agnostic but fool the network on the majority of

inputs. While recent work has focused on image classifica-
tion, this work proposes attacks against semantic image seg-
mentation: we present an approach for generating (univer-
sal) adversarial perturbations that make the network yield a
desired target segmentation as output. We show empirically
that there exist barely perceptible universal noise patterns
which result in nearly the same predicted segmentation for
arbitrary inputs. Furthermore, we also show the existence
of universal noise which removes a target class (e.g., all
pedestrians) from the segmentation while leaving the seg-
mentation mostly unchanged otherwise.

Mummadi Chaithanya Kumar
University of Freiburg

chaithu0536@gmail.com

Volker Fischer

Bosch Center for Artificial Intelligence, Robert Bosch GmbH

volker.fischer@de.bosch.com

(a) Image (b) Prediction

(d) Prediction

Figure 1. The upper row shows an image from the validation set
of Cityscapes and its prediction. The lower row shows the image
perturbed with universal adversarial noise and the resulting pre-
diction. Note that the prediction would look very similar for other
images when perturbed with the same noise (see Figure 3).

(a) image (b) prediction on image

(c) universal noise (4x) (d) adv. target

(e) adv. example (f) pred on adv. example

Correctness & hand-written code

Testing challenges

=== Software Engineering Institute

Carnegie Mellon University

FAA RESEARCH PROJECT ON SYSTEM
Summary COMPLEXITY EFFECTS ON AIRCRAFT SAFETY:
IDENTIEYING THE IMPACT OF COMPLEXITY ON
SAFETY

Sarah Sheard, Chuck Weinstock, Michael Konrad, and Donald Firesmith
July 2015

The complexity
and the nondeterministic nature of software interaction requires formal static analysis methods to com-

plement testing, with consistency across analysis models.

AdaCore

SPARK — robustness & programming by contract
Checks inconsistencies out-of range values, dead exec paths...

Checks absence of run-time errors buffer overflows, divide by O, ...

Robustness is there by construction, NO

“conventional” robustness testing necessary

Specify properties & have them verified FFI

AdaCore

SPARK

procedure Stabilize (Mode: in Mode Type; Success: out Boolean)

AdaCore

SPARK —a more complete spec

procedure Stabilize (Mode: in Mode Type; Success: out Boolean)

with Global => (Input => (Accel, Giro), In_Out => Rotors),

AdaCore

SPARK — programming by contract

procedure Stabilize (Mode: in Mode Type; Success: out Boolean)
with Global => (Input => (Accel, Giro), In _Out => Rotors),
Pre => Mode /= Off,

Post => (if Success then Delta Change (Rotors'0Old, Rotors));

Spark-2014.org & libre.adacore.com

AdaCore

http://libre.adacore.com/

Correctness & MBE

MBE in Automotive [Requirements

A e
N Simulink®
models

Modeling the laws of physics A
{ Software }

Creating a controller
Checking (by simulation) the controller in its physical context (the “plant”)

Translating the controller into software

“Plant and controller models” written & simulated with Simulink®

Machines (autocoding) translate: what is the state of the art ?

AdaCore

; Simulink®
Autocode generation [— H

A
|
Generatedcode === { Software]

e Consistent with simulation
e Customizeable

e Can integrate & seamlessly debug hand-written code

Trusted
How do you check if the controller contains runtime errors ?

* Code generator comes with a static verifier

What happens when upgrading to a new version of Simulink® ?

* Code generator produces the same code for the same models

AdaCore

A joint model & code debugger helps experts work together

SIL + PIL debugging, what-if scenarios (test difficult behaviors on the system by specifying signals that might be hard to
generate by conventional testing)

[XoN] GPS - Outline - L isc/lib_debug/ - d _debug project
File Edit Navigate VCS Project Build Debug Tools CodePeer Window Help

AmQ -« CwRARLPRL PELEE R search

Q- filter = ¢ simulation.adb speedometer_debug.gpr adb
125 -~ 8lock '
126 iod

¥ %Calculate Speed 127 End

128
Mod16_Diff
¥sMor16_Differenci o

T rt

je 8x100087330 <speedometer__comps244>

movzwl -8x3al%rbp} , heax

mov #eax,-0x14(%rbp)

jmp @x108087337 <speedometer__comp+251>

> movl $6x1,-Bx14(%rb

Block 'speedometer/Calculate Speed/Elapsed Time (h)' > movzbl fgx“(wﬂ—bp;’gegi

Y5Mod16_Differenct 139 apsed_Time_h_outl := (Mod16_Difference_1_Difference) / (ms_in_second_c : mov %al,-0x55(%rbp)

%validity Check 131 End edoneter/Calculate Speed/Elapsed Time (h novss Bx307be (%rip) k@ # 0x100037b04
132 movss “xnmd, -Ax44(%rbp)

movzwl -8x2a(%rbp}, %eax

pxor xmn, fxmmd

Project
HoRIS 18D

Outline

Alqwsssy

G Clicktine 133 Block 'speedometer/Calculate Speed/Validity Check/U#ate Period\n(0f
Gbistance (m) 134 date_Period 05 interrupt outl := Unsigned 16 tspeenmeter parans. UPDAT
135 End Bloc edometer/Calculate Speed/Validity Check/Upd Period\ cvtsi2ss %eax,%xmm@
O;Elapsed Tine (h 135 >t nulss -8xad(%rbp),wenmd
OgMillisecs 137 Block 'speedameter/Calculate Speed/Validity Che 1 movss %xnmd, -0x48{%rbp)
s in ourl 138 m1_outl Validity_Period_outl) - (Update_Period_0S_interrupt_outl); i movzwl -8x26(%rbp),%eax
139 End Block 'speedometer/Calcul S Check/Suml' : sub -8x22(%rbp),%ax
Gms in second 140 i i . . . >t mov %ax,-0xda(%rbp)
New Speed 141 Block 'speedometer/Calculate Speed/Validity Check/Relational\nOpera movzwl -8x4al%rbp),%eax
% P 142 lational, Uperator outl (Mod16_Difference_2 leferem:e) <= (Sum1_out E T - 1] s crp $0x1f4, %eax
O 0ld Clicktime — End edomet Lculate Speed/Validity Check/RelationalinO = o >t setle sal

0l Rotations 4 . . ’ d mov %al,-dxdb(%rbp)
% 145 Black er/Caleulate Speed/Switch 0 : movzbl -@x3f (%srbp} , keax
05014 Speed ;) cmp -@xdbi%rbp),%al

i apsed_Tire_h_ou = en
014 Speed if ne 1 (Elapsed_Tine_h_out1) /= (0) th
48

sete L
Switch_out1 := Unsigned_32 (Elapsed_Time_h_out1); : mov %al,-Oxéc(%rbp)

G Rotations else) >t mov -@x14(%rbp),%eax
0, Speed 5 Switch_outl := ms_in_ourl_outl; d test %rax,%rax
Speed Ts Auailal ‘f'L d if; t is 8x18008739c <speedometer__comp+352>
O;Speed Is Availa 52) ;) : pxor %xmmd, xmnd
O Switch 1‘1 End speedometer/Calculate Speed/Switch . B cvtsi2ss %rax, kxmrd
5: : j
eed Is ﬂval\able ReLatwnal Uparator outl; - she wrdx
End speedoneter/Speed Is Available : and 881, %eax
i or “rax, brdx
Block 'speedometer/Calculate Speed/Wheel Circunference pxor %xmm@, %xmmd
eel_Circunference_outl := (speedometer_parans.PI) # (speedometer_paran cvtsiZss wrdx,sxmnd
End Block 'speedomet lculate Speed/ L Circunference' . £ addss %xmm@, xnm
g movss -@x48(%rbp) ,%xmml
eter/Calculate Speed/Distance (m)") " > divss \xmm&,“ﬂxm?’l’
'rmeeLic_chunfErenceiuutl] # (Float (‘Mudlsimfferenc(H movaps %xmml, %xmm@
ometer/Calculate Speed/Distance (m) 2 movss %xmm@, -0x58 (%rbp)
) cmpb $0x@,-8x3f (%rbp)
er/Subt . ie 8x1000073d8 <speedometer__comp+412>
illisec: 1) —\(Unlt_Delay_outlJ; : movss -@x58(%rbp) , %xmm@
ract movss xmmd, -0x18(%rbp)
im0 Ax1ARARTIEY <snerdometer comned27>

Scenario

speedometer.comp 13366 @

Messages Locations Call Trees Debugger Console Debugger Execution Debugger Conscle Debugger Execution

Conclusion

Engineering is the art of compromise

Complexity of engineering safe & secure systems A
if formalization 2 help from tools 7

but
too much formalism work 2 A

AdaCore

Use the right balance of formalism to

Specify key safety & security properties of the intent

Have tools check these properties through layers of abstraction

AdaCore

Keep humans creative

Use technologies that

Allow to specify safe & secure properties

—> Create GIZMO
Check them

Limit the introduction of flaws

Detect errors early (e.g. inconsistencies) Check GIZMO for

correctness & com pleteness

i

AdaCore

Each OP is stated in 1 page

1. Statement

2. Definitions

3. Pre-requisites (which must exist to allow OP satisfaction to be shown)

4. Constraints (on how OP satisfaction must be demonstrated)

5. Assumptions (which need only be stated, not justified)

Definitions

Desired system behavior: System needs and constraints expressed by the stakeholders

Defined intended functions (DIF): The record of the system needs and constraints as expressed by stakeholders

Failure Condition(s): A condition having an effect on the aircraft and/or its occupants, either direct or
consequential, which is caused or contributed to by one or more failures or errors, considering flight phase and
relevant adverse operational or environmental conditions or external events (from ARP 4754A)

Foreseeable operating conditions: External and internal conditions in which the system is used, encompassing all
known normal and abnormal conditions

Unacceptable Safety Impact: An impact which compromises the system safety assessment

Implementation: /tem or collection of items contributing to system realization, for which acceptance or approval
is being sought

- Item (from ARP 4754A) is a hardware or software element having bounded and well-defined interfaces

Constraints applying to all OPs

- The process to satisfy each OP must be defined and conducted as defined

- Criteria for evaluating the artifacts are defined and shown to be satisfied individually
and collectively

- All artifacts required to establish the OP are under configuration management and
change control

Intent

The defined intended functions are correct and complete with respect to the desired

system behavior.

Constraints

- The defined intended functions must address the failure conditions

Correctness

The implementation is correct with respect to its defined intended functions, under

foreseeable operating conditions

Constraints

- When tiers of decomposition are used, the means of showing correctness among the
tiers and to the defined intended functions must be defined and conducted as

defined

- The implementation must be correct when functioning as part of the integrated

system or in environment(s) representative of the integrated system

Necessity

All of the implementation is either required by the defined intended functions or is

without unacceptable safety impact

Constraints

- The system safety assessment must address all of the implementation

